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Abstract

Decentralized deep learning algorithms leverage peer-to-peer communication of
model parameters and/or gradients over communication graphs among the learning
agents with access to their private data sets. The majority of the studies in this area
focuses on achieving high accuracy, many at the expense of increased communi-
cation overhead among the agents. However, large peer-to-peer communication
overhead often becomes a practical challenge, especially in harsh environments
such as for an underwater sensor network. In this paper, we aim to reduce the com-
munication overhead while achieving similar performance as the state-of-the-art
algorithms. To achieve this, we use the concept of Minimum Connected Dominat-
ing Set from graph theory that is applied in ad hoc wireless networks to address
communication overhead issues. Specifically, we propose a new decentralized deep
learning algorithm called minimum connected Dominating Set Model Aggregation
(DSMA). We investigate the efficacy of our method for different communication
graph topologies with a small to a large number of agents using varied neural
network model architectures. Empirical results on benchmark data sets show a
significant (up to 100X) reduction in communication time while preserving the
accuracy or in some cases increasing it compared to the state-of-the-art methods.
We also present analysis to show convergence of our proposed algorithm.

1 Introduction

Over the past several years, researchers have been working on proposing various algorithms for
distributed deep learning, among which Federated Learning (FL) (McMahan et al., 2017; Kairouz
et al., 2019) shows promising performance in various scenarios. However, a major limitation with
using FL is its dependence on a central parameter server. To tackle this limitation, decentralized
deep learning (DDL) emerged as a branch of distributed deep learning. In DDL, several spatially
distributed agents, each with an individual subset of data collectively learn together a deep learning
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Figure 1: DSMA algorithm: Considering the graph topology network (solid and dotted blue lines) with 10
agents, The DSMA steps are as follows: (1) Finding the minimum connected dominating set of the network
(yellow nodes). (2) Dominating agents (yellow nodes) communicate with dominated agents (green nodes) to
send and receive model parameters. (3) Each agent computes weighted average of the received model parameters
and its own parameters. (4) Dominating agents communicate with each other to create a consensus model. (5)
All agents update their model parameters.

model by peer-to-peer communication of useful information such as the model parameters or the
gradients. The major advantage of DDL is that, unlike FL, there is no centralized server and hence
avoids any issues with server failure and server latency. While SoTA DDL algorithms work well
for the smaller number of agents, there is significant communication overhead especially for larger
number of agents such as N > 50. Different strategies for DDL have been proposed to reduce
the communication overhead including compression (Lu and De Sa, 2020; Vogels et al., 2020),
adding local updates in some iterations (Li et al., 2019), randomly choosing agents to communicate
(Nadiradze et al., 2021), and changing communication graph topology (Wang et al., 2019). However,
maintaining high accuracy and reducing the communication overhead simultaneously still remains
a major challenge in the DDL literature. Additionally, these algorithms usually suffer from low
accuracy for large-scale networks.

Communication reduction techniques have been widely investigated in Wireless Ad Hoc Network
(WANET) and Mobile Ad Hoc Network (MANET) to find efficient network routing. One of the
popular techniques involves finding Minimum Connected Dominating Set (MCDS) of the network
graph topology and centralizing the whole network to a small set which is dominating the whole
graph (Yu et al., 2013; Wang et al., 2021; Wu and Li, 1999). In the communication network literature,
MCDS consists of nodes that are called gateway hosts. With this setup, every node is either a gateway
host or connected to a host. Thus, only gateway hosts keep routing information in the network.

Inspired by the MCDS notion in Ad Hoc networks to reduce communication overhead, we propose a
new algorithm for DDL called minimum connected Dominating Set Model Aggregation (DSMA).
Our proposed algorithm not only targets communication reduction in DDL but also preserves the
accuracy even in large-scale networks. At each training loop, each dominating agent communicates
with its neighbors (that are not in the MCDS) to send and receive the model parameters. Then, each
agent aggregates the received model parameters with its own model parameter using a weighted
averaging scheme. After that, dominating nodes communicate with each other and average the model
parameters to develop a consensus model among the MCDS agents (similar to other DDL methods)
(Nadiradze et al., 2021). In the end, all agents update their model parameters. We illustrate the
steps of our algorithm in Figure 1, where the green nodes, i.e., the dominated agents do not need to
communicate with each other, thus reducing communication. At the same time, dominating agents
can collect the whole graph model parameters to create a consensus model and then broadcast it to
the dominated nodes in the next iteration. This ensures a complete cycle of transferring information
among agents (for achieving consensus in the whole graph). This characteristic of MCDS (in our
algorithm) is similar to that of a server in FL algorithms.

In summary, our main contributions in this paper are: (1) We propose a new graph-based communi-
cation protocol for decentralized learning systems to reduce the communication cost with minimal
loss in performance. (2) We empirically verify our proposed algorithm for different datasets and
different number of agents to demonstrate up to 100X reduction in communication cost compared to
traditional decentralized learning methods. (3) Finally, we analyze how our communication protocol
only transforms the optimization problem, but the spectral properties of the agent interaction remain
similar.

2



Table 1: Comparisons between different decentralized deep learning approaches. Conv: convergence rate,
Comm: Communication rate; Scalability: if the method can achieve high accuracy (> %50) for N > 50;
Comm.Red.Tech: Communication reduction technique; b: batch size; ρ: number of non-zero elements in the
graph connectivity matrix; ε: cost regarding forward and backward pass during training the neural network; I1:
is the number of local updates; I2: number of decentralized SGDs updates; Γ: number of connections between
agents that are not in connected dominating set S; z: probable missing connections between dominated and
dominating sets.

Method Conv Comm Scalability Comm.Red.Tech
DPMSGD O( 1

T + 1√
NT

) O(bρ+ ε) Ë -
SGP O( 1

T + 1√
NT

+ 1
T 1.5 ) O(bρ+ ε) é approximate averaging

Matcha O(NT + 1√
NT

) O( bρ2 + ε) é graph-based
LDSGD O( 1

T + 1√
NT

) O( I2bρ
I1+I2

+ ε) Ë local updates
SwarmSGD O( 1

T ) O( bρ2 + ε) é random sampling
DSMA∗ O( 1

T + 1√
NT

) O(b(ρ− Γ + z) + ε) Ë graph-based

1.1 Related Works

Large-scale deep learning relies heavily on parallel stochastic gradient descent (SGD). The majority of
distributed deep learning methods i.e. FL take advantage of this method using a parameter server (Li
et al., 2014) which results in a notable bandwidth cost that affects scalability. Also, in some applica-
tions, continuous communication between the agents and a central server is not feasible (Lian et al.,
2017; Esfandiari et al., 2021). In an attempt to find a decentralized learning approach over a network
of agents, several decentralized SGD approaches were proposed by researchers (Sun et al., 2021) that
can be divided into different categories. One category is gossip averaging algorithms (Kempe et al.,
2003; Lian et al., 2017) that try to achieve a partial average between the connected nodes. Among
gossip averaging methods, DPMSGD (Lian et al., 2017) shows that their decentralized method can
outperform centralized algorithms by avoiding the communication traffic jam. In another line of
work, Scaman et al. (2018) introduced a multi-step primal-dual algorithm and analytically showed
that the error decreases at a fast rate even for non-strongly-convex objective functions. Also, to
accelerate the training process, Assran et al. (2019) proposed the SGP algorithm which converges at
the same sub-linear rate as SGD and performs approximate distributed averaging. In the same line
of work, Lu and De Sa (2020) and Vogels et al. (2020) proposed compression-based algorithms to
improve memory usage and reduce the communication overhead of existing decentralized learning
approaches. With the goal to address the data non-IIDness in decentralized learning, Esfandiari et al.
(2021) proposed projecting the aggregated gradients from the neighboring agents into a single gradient
using quadratic programming methods. SwarmSGD was also proposed by Nadiradze et al. (2021)
which learns from random interactions between connected nodes in a graph to achieve consensus
while reducing the communication overhead. Similarly, Tang et al. (2020) proposed an algorithm
where each agent adaptively selects its peer based on the bandwidth resources. With the same goal,
Li et al. (2019) proposed the LDSGD algorithm by considering a specific ratio of local to distributed
iterations for training the agents’ models. However, local updates result in a significant accuracy
reduction in large-scale networks compared to the vanilla gossip-based averaging method.

As such, the communication overhead is significantly higher for DDL (unlike FL). Researchers
have come up with algorithms that achieve the same linear speed up compared to centralized
algorithms (Koloskova et al., 2020; Yu et al., 2019), and the training time is proportionate to the
number of training agents (Ying et al., 2021).The communication overhead between the agents is
heavily dependent on the graph topology, which determines what nodes can communicate with each
other during training. The sparser the graph becomes, the less overall communication happens among
the agents. Matcha (Wang et al., 2019) tries to use this concept and considers a subgraph (matching
in the graph) to communicate in each iteration. However, using this method, consensus is achieved
late and competitive accuracy even with a less number of agents is not guarenteed. Contrary to this
approach, in this paper, we are looking more closely at the graph characteristics to propose the DSMA
algorithm, which considers MCDS to dominate all agents and to help flow information in the graph.
Therefore, this algorithm helps to eliminate excessive information transfer in the graph. Convergence
and communication rates of benchmark methods are compared to our proposed algorithm in Table 1.
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(a) (b) (c) (d)

Figure 2: Minimum connected dominating set (red) for different topologies (a) Fully Connected (FC), (b) Ring,
(c) Bipartite, and (d) Random

2 Preliminaries

2.1 Decentralized Deep Learning

In DDL, N agents communicate to solve the following empirical risk minimization problem:

min f(x) :=
1

N

N∑
i=1

fi(x), (1)

where x ∈ Rd is the model parameter, f : Rd → R is the given loss function and fi(x) is the loss
function corresponding to agent i which is defined based on its private dataset Di. Although each
agent works on its private training data concurrently, the goal for decentralized learning is to come up
with a consensus model for the agents through a round of communication during the updating process.
The communication between the agents happens through a connected undirected graph topology
G(V,E), where edges E are communication links, and V indicates vertex nodes or agents in this
framework. Agent a ∈ V and agent b ∈ V are considered neighbors and can only communicate
if (a, b) ∈ E. Further, most DDL approaches also define communication matrix Θ ∈ RN×N

representing the agent’s interactions, where each element θij signifies the link weight between agent i
and agent j. These weights will be used for averaging the agents parameters. This matrix is computed
offline based on the graph but the agents only need to know about (matrix elements of) their own
neighborhoods. Θ is a doubly stochastic matrix and Θb

a = 0 if (a, b) /∈ E (Li et al., 2019). While
the assumption of doubly stochastic communication matrix is very strict, these provide the powerful
property of x = Θ × Θ... × Θx = 1

N I × x, thus allowing for better convergence. Here, we also
denote that xτ = [xτ

1 , x
τ
2 , ..., x

τ
N ]T is the vector of model parameters at iteration τ of the algorithm.

2.2 Minimum Connected Dominating Set

Connected Dominating Set (CDS) in a graph G(V,E) is a connected set of nodes S ⊆ V where each
node has at least one connection to the nodes in this set. The CDS with minimum cardinality is the
Minimum Connected Dominating Set (MCDS) (minS⊆V |S|). Intuitively, if we consider the MCDS
as one node in the graph, it connects and dominates all other nodes (yellow nodes in Figure 1).

Finding the MCDS is an NP-hard problem, and extensive studies have focused on proposing nearly
exact approximation techniques to compute it. In this work, as a first step of our proposed method,
we found the MCDS of the given graph using an approximation algorithm proposed by Butenko et al.
(2004). This algorithm calculates the MCDS in O(Nm) time complexity where N and m are the
cardinalities of vertices and edges in the graph. This algorithm considers all vertices as nodes in the
connected dominating set. Then, at each step, a node is selected using a greedy algorithm, and it
is decided to either remove the node from the set or add it to the final solution S. Figure 2 shows
the results of this greedy algorithm for four different graph topologies: Fully Connected (FC), Ring,
Bipartite (Bipar), and a random graph.

3 Dominating Set Model Aggregation

3.1 The DSMA algorithm

We now describe our DSMA algorithm for DDL. The outline of our algorithm is shown in Figure 1 and
the pseudocode is presented in Algorithm 1. First, given a graph topology G(V,E), the MCDS (S) is
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Algorithm 1 DSMA
Input: N , α , T , Di, Θ
Initialize x0

i , v0i
1: Find MCDS S, and its corresponding Π and W matrices
2: for τ = 1 : T do
3: {Perform following operations concurrently ∀i ∈ V }
4: if i /∈ S then
5: {Dominated update}
6: pτi = Wi

ix
τ
i +

∑
l∈NS

i
Wl

ix
τ
l

7: end if
8: if i ∈ S then
9: {Dominating update}

10: pτi = Wi
ix

τ
i +

∑
l∈NO

i
Wl

ix
τ
l

11: pτi =
∑

l∈NS
i
Πl

ip
τ
l +Πi

ip
τ
i {MCDS consensus}

12: end if
13: xτ+1

i = pτi − αgi(x
τ
i )

14: end for

computed offline in a centralized manner, once in the beginning and further the resulting topology
is used for training. The dominating nodes S constructs a smaller connected graph called Ḡ(S, P ),
where P ⊆ E is the set of edges from the original graph topology connecting the dominating nodes,
S. Moreover, every agent i ∈ V has a neighbor j in dominating set (j ∈ S) which we consider
as dominating neighbor and the set of such neighbors denoted by N S

i . Every agent i ∈ V can
also have a neighbor j which is not in the dominating set of whole graph (j ∈ V \ S), which
we consider as dominated neighbor, and the set of such neighbors denoted by NO

i . Formally, let
V = {v1, v2, v3, ..., vn, r1, r2, ...rn̄} be the ordered set of all the dominating agents and all the
dominated agents such that S = {v1, v2, ...vn} and S̄ = V \ S = {r1, r2, ...rn̄}, where n = |S|,
n̄ = |S̄|, and N = n+ n̄.

After finding the MCDS and before explaining the our proposed algorithm, we also need to define a
new communication matrix Π ∈ Rn×n where Π is also a doubly stochastic similar to Θ. Π matrix
represents the communication links among the dominating nodes; and, its elements are assigned based
on the elements of the typical Θ matrix in DDL literature (Li et al., 2019; Assran et al., 2019). This
means if θij ̸= 0 (i, j ∈ S), then πij ̸= 0, and otherwise if θij = 0(i, j ∈ S), then πij = 0. After
considering non-zero elements as placeholders and based on Sinkhorn-Knopp algorithm (Sinkhorn,
1967), we can generate the doubly stochastic Π matrix. Formally, to generalize this matrix to the
whole graph we can build up the Π matrix as

Π =

[
I 0
0 Π

]
, (2)

where I ∈ Rn̄×n̄ and Π ∈ Rn×n as we defined. Basically, Π is a doubly stochastic matrix to ensure a
consensus within the dominating agents. We also define another communication matrix W ∈ RN×N

(in the form of block matrix) where

W =

[
WS̄S̄ WS̄S
WSS̄ WSS

]
,

WS̄S̄ = diag(wr1
r1 , w

r2
r2 , ..., w

rn̄
rn̄ ),WSS = diag(wv1

v1 , w
v2
v2 , ..., w

vn
vn ),WS̄S = WT

SS̄ ,

(3)

WS̄S̄ ∈ Rn̄×n̄, WSS ∈ Rn×n, WS̄S ∈ Rn̄×n. Block WSS̄ =
[
wj

i

]
n×n̄

, ∀i ∈ S, ∀j ∈ S̄ is the

matrix of weights corresponding to the information transmitted from the dominating agents S to the
dominated agents S̄ based on the specified graph topology G(V,E) (the blue double sided arrows
in Figure 1). Also, WSS and WS̄S̄ matrices can be any diagonal matrix. Then, considering the
non-zero elements of these matrices (blocks) as placeholders when constructing the W matrix, we
can make W doubly stochastic based on the Sinkhorn-Knopp algorithm (Sinkhorn, 1967).

Intuitively, Π and W are two communication matrices which can give in effect similar behavior as Θ.
Now, based on our algorithm, the whole graph communication relation can be defined as Θ′ = ΠW
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(note that Θ′ also becomes doubly stochastic). Generally, Π and W of Θ′ in DSMA results in
MCDS consensus and dominated nodes consensus, respectively. A unique feature of our algorithm
is that the defined Θ′ matrix effectively prunes redundant connections of the graph G(V,E) with
communication matrix Θ, leaving us with a new topology that efficiently shares information between
different agents while reducing the communication overhead. Specifically, as a result of the product
of Θ′ and the model parameters, the extra connections in the graph (connections between dominated
nodes similar to the dotted lines in Figure1) will be eliminated for computing model parameters.

Once, Π and W are well defined for the MCDS, the DSMA training process begins (from step 2 of
Algorithm 1). At each iteration τ , each dominated agent i ∈ S̄, collects the model parameters of its
dominating neighbors (N S

i ) and aggregate them with its model parameter xτ
i using weighted average.

Concurrently, each dominating agent i ∈ S, weighted averages its dominated neighbors’ (NO
i ) model

parameters with its model parameter xτ
i . These communication steps can be summarized using the

matrix algebra as follows:
pτ = Wxτ , (4)

Now, the dominating agents i ∈ S have the whole graph model parameters, they can communicate
with each other to find a consensus model parameters using the Π matrix (

∑
l∈NS

i
Πl

ip
τ
l + Πi

ip
τ
i ).

Here, p is the weighted average stored in the previous step. This consensus step can be formulated in
a matrix form as follows:

pτ = Πpτ , (5)

Once a consensus is reached among the dominating agents in step 11 of the algorithm (equation 5),
an SGD updating step is taken for all nodes i ∈ V as follows:

xτ+1 = pτ − αg(xτ ), (6)
where g(xτ ) = [gv1(x

τ ), ..., gvn(x
τ ), gr1(x

τ ), ..., grn̄(x
τ )]T , and gi(x

τ ) is the computed gradient
for agent i in iteration τ . We note that pτ = ΠWxτ where we denote Θ′ = ΠW reflecting both the
communication and the consensus steps.

3.2 Convergence Analysis

We now present our main convergence analysis considering the common assumptions in the DDL:
Assumption 1. The following properties are assumed for matrix Θ′:
(1) 0 ≤ θ′ij ≤ 1

(2)1TΘ′ = 1T and Θ′1 = 1 (doubly stochastic)
(3) If i, j ∈ S̄ = V \ S and i ̸= j, then θ′ij = θ′ji = 0
(4) null{I −Θ′} = span{1}.

Property 3 of the assumption 1 is a direct result of the proposed DSMA algorithm that removes
the unnecessary communications between the dominated nodes and, hence, a reduction in the
communication overhead. This property results from the structure of W and Π as discussed above.
Also, since Θ′ is a doubly stochastic matrix, its eigenvalues is denoted as 1 = λ1(Θ

′) > λ2(Θ
′) ≥

... ≥ λN (Θ′) ≥ 0.
Assumption 2. (β-smoothness) For each agent i, function fi : Rd → R should be βi-smooth which
means it is continuously differentiable and for all x, y ∈ Rd we have:

fi(y)− fi(x)−∇fi(x)
T (y − x) ≤ βi

2
∥y − x∥2 (7)

Assumption 3. (κ-strongly convex) The objective functions fi : Rd → R are assumed to be κi

strongly convex, i.e. for all x, y ∈ Rd, we have:

fi(y)− fi(x)−∇fi(x)
T (y − x) ≥ κi

2
∥y − x∥2 (8)

Assumption 4. The objective functions fi : Rd → R are considered proper (not everywhere infinite),
and coercive which means; if ∥x∥ → ∞, then f(x) → ∞.

Based on assumptions 2, 3, and 4, we can conclude that the gradient of function fi is Lipschitz
continuous which means ∥∇fi(y)−∇fi(x)∥ ≤ βi∥y − x∥,∀x, y ∈ Rd.Therefore, considering the
whole agents objective functions,

∑N
i=1 fi(xi) is strongly convex with κ = minκi and its gradient

has Lipschitz parameter β = maxβi. Also, κ ≤ β based on the strong convexity and Lipschitz
properties of ∇fi.

6



3.2.1 Intermediate Concepts

Before providing the theoretical results, here we explain some concepts which will help in proof of
the algorithm convergence. More details about the proof are provided in the Appendix section. In
order to prove the convergence of this algorithm we use the Lyapanov Stability method and define a
Lyapanov function. Let us consider equation 6, and re-write this equation by adding and subtracting
xτ and considering Ψ = I−Θ′, we will have:

xτ+1 = xτ − xτ +Θ′xτ − αg(xτ ) = xτ − α(g(xτ ) + α−1Ψxτ ) (9)

Considering 9, updating of the model parameters happens through ∇F = g(xτ ) + α−1Ψxτ . There-
fore, equation 9 can be rewritten as xτ+1 = xτ − α∇F where ∇F is, in fact, the effective gradient
after applying the algorithm steps.

We note that ∇F is the Stochastic Lyapanov Gradient (Zeng and Yin, 2018). Assuming F(x) =
[fv1(x

τ ), ..., fvn(x
τ ), fr1(x

τ ), ..., frn̄(x
τ )]T and 1 ∈ RN , the appropriate Lyapanov function can be

proposed as the following:

V (x, α) :=
N

n
1TF(x) +

1

2α
∥x∥2Ψ, (10)

where ∥x∥2Ψ is the norm of x with respect to Ψ. (The 1
2α∥x∥

2
Ψ is similar to adding penalization

(Frobenius norm) to our algorithm).

As we mentioned earlier,
∑N

i=1 fi(xi) is strongly convex with κ = minκi and its gradient has
Lipschitz parameter β = maxβi, the gradient of ∇V (x) is Lipschitz continuous (it is continuously
differentiable). The Lipschitz constant for ∇V (x) is β̃ = β + α−1λmax(Ψ) = β + α−1(1 −
λN (Ψ). Similarly, it can be concluded that V (x) is also strongly convex with parameter κ̃ =
κ+(2α)−1λmin(Ψ) = κ+(2α)−1((1−λ2(Ψ)). It is worth mentioning that, following from κ ≤ β,
we can conclude that κ̃ ≤ β̃. Based on the strong convexity property of Lyapanov function V , its
difference with the optimum value is bounded for ∀x ∈ RN as follows:

2κ̃(V (x)− V ∗) ≤ ∥∇V (x)∥2. (11)

Considering this property of V (x), the main theoretical convergence result can be determined. First
we introduce a lemma that shows implementing the proposed DSMA algorithm leads to sufficient
decrease in the Lyapunov function.

Lemma 1. Under Assumptions 1 - 4, the following holds true for each iteration τ ∈ N of DSMA:

E[V (xτ+1)]− V (xτ ) ≤− α∇V (xτ )TE[∇Fi(x
τ )] +

β̃

2
α2E[∥∇Fi(x

τ )∥2]. (12)

Moreover to ensure convergence of the proposed algorithm, we utilize a standard assumption in the
context of (centralized) deep learning on the characteristics of Fi(x

τ ).

Assumption 5. For all τ ∈ N, scalars c2 ≥ c1 > 0, and δ1, δ2 ≥ 0 can be set such that:
(a) ∇V (xτ )TE[∇Fi(x

τ )] ≥ c1∥∇V (xτ )∥2,
and ∥E[∇Fi(x

τ )]∥ ≤ c2∥∇V (xτ )∥,
(b)V ar[∇Fi(x

τ )] ≤ δ1 + δ2∥∇V (xτ )∥2.

We note that Assumption 5(a) guarantees that sufficient descent of V happens in the direction of
Fi(x

τ ). Based on Assumption 5(b), the variance of ∇Fi(x
τ ) is bounded above by the second

moment of ∇V (xτ ). Expanding the variance of ∇Fi(x
τ ), the second moment of ∇Fi(x

τ ) can be
bounded above as

E[∥∇Fi(x
τ )∥2] ≤ δ1 + δ∥∇V (xτ )∥2, (13)

Where δ := δ2 + c22 ≥ c21 > 0. Considering Assumption 5, Lemma 1 can be re-organized as follows:

Lemma 2. Under Assumptions 1- 5, each iteration τ ∈ N of the proposed DSMA algorithm satisfies:

E[V (xτ+1)]− V (xτ ) ≤ −(c1 −
β̃

2
αδ)α∥∇V (xτ )∥2 + β̃

2
α2δ1, (14)

where the step size (α) is 0 < α ≤ c1
β̃δ

to impose sufficient condition for the rest of analysis.
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Table 2: Test accuracy and communication time (per epoch) for CNN model training on CIFAR10.
Accuracy (%) Communication time (s)

Number of agents 5 10 30 60 100 5 10 30 60 100

DPMSGD (Lian et al., 2017)
FC 76.3 74.6 70.5 68.8 59.0 3.1 5.7 13.5 32.5 45.6

Ring 75.7 74.0 66.7 59.8 56.3 3.1 5.5 14.4 31.4 44.6
Bipar 75.3 74.5 64.9 52.5 44.1 3.2 5.3 14.1 31.7 45.5

C
om

m
un

ic
at

io
n-

ef
fic

ie
nt

m
et

ho
ds

SGP (Assran et al., 2019)
FC 71.7 71.04 59.2 46.6 29.3 3.6 5.4 13.9 32.3 46.2

Ring 70.9 71.2 59.1 46.9 29.3 3.1 5.3 13.8 31.5 45.0
Bipar 70.9 71.0 59.8 47.5 29.4 4.2 5.4 13.8 31.5 44.4

Matcha (Wang et al., 2019)
FC 60.9 55.3 - - - 1.5 2.4 - - -

Ring 60.7 55.7 - - - 1.8 2.8 - - -
Bipar 54.1 54.1 - - - 1.7 2.7 - - -

LDSGD (Li et al., 2019)
FC 76.3 74.4 68.7 66.5 58.6 2.1 3.8 8.6 20.6 30.4

Ring 75.5 73.0 65.2 58.7 54.4 2.1 3.6 9.6 20.9 29.7
Bipar 75.6 74.5 63.5 50.6 43.9 2.2 3.5 9.4 21.2 30.3

SwarmSGD (Nadiradze et al., 2021)
FC 75.3 72.3 50.6 27.8 12.3 1.7 2.8 6.5 16.7 22.2

Ring 75.1 72.7 49.9 25.7 10.9 1.6 2.6 7.2 16.5 23.3
Bipar 75.9 71.4 51.0 28.9 12.9 1.5 2.7 7.1 16.7 22.4

DSMA∗
FC 74.7 72.5 67.5 64.5 55.8 0.7 0.7 0.5 0.5 0.4

Ring 75.2 73.1 65.4 60.1 56.6 1.7 3.9 13.5 30.6 43.7
Bipar 74.6 71.8 64.9 60.2 52.9 1.1 0.9 1.0 1.0 0.9

Next, in Appendix we show that for a general loss function, the proposed DSMA algorithm will lead
to consensus among the agents if the step size does not exceed the specified upper limit in Lemma
2 . All the proofs are deferred to Appendix. Our main theorem shows that iterates of the DSMA
algorithm converge to a neighborhood of the optimal value.

Theorem 1. (Convergence of DSMA) Under assumptions 1-5, the following inequality holds for each
iterate τ ∈ N of DSMA algorithm for the strongly convex case:

lim
τ→∞

E[V (xτ )− V ∗] ≤ αβ̃δ1
2κ̃c1

E[V (xτ )− V ∗] ≤ (1− ακ̃c1)
τ−1(V (x1)− V ∗) +

α2β̃δ1
2

τ−1∑
l=0

(1− ακ̃c1)
l,

(15)

where V ∗ is the optimal value, and α satisfies 0 < α ≤ c1−(1−λN (Θ′))δ

β̃δ
.

Based on this theorem we conclude that V (x) is linearly converging to a neighborhood of the optimal
value (limτ→∞ E[V (xτ )− V ∗] ≤ αβ̃δ1

2κ̃c1
). Proofs and DSMA convergence result for the non-convex

case are presented in the Appendix.

4 Experimental Results

In this section, the experimental results for the DSMA in terms of convergence, accuracy, scalability,
and communication time are presented. Moreover, the performance of our algorithm is compared with
benchmark algorithms in decentralized deep learning such as: SGP (Assran et al., 2019), momentum
variant of DPSGD or DPMSGD (Lian et al., 2017), LDSGD (Li et al., 2019), Matcha (Wang et al.,
2019), and SwarmSGD (Nadiradze et al., 2021).

Empirical studies are conducted for 5, 10, 30, 60, and 100 agents to evaluate the scalability of our
algorithm. The training is applied to two benchmark datasets; MNIST and CIFAR10. Our method is
examined for two different model architectures: a deep convolutional neural network (CNN) (LeCun
et al., 1998) and ResNet20 (He et al., 2016). For training, the mini-batch is selected with the batch
size set as 128. The 0.01 step size is initially used and is decayed with the constant 0.98. The
momentum constant in all of the experiments is considered 0.9. After training, the average accuracy
of the models for training and testing data is reported in plots and tables (the results for the MNIST
dataset with the CNN model architecture and CIFAR10 with the ResNet20 model architecture are
reported in the Appendix). Each experiment was run three times, and its average value is reported.
The code is written with the PyTorch distributed package. Our presented results are executed using a
high-performance cluster with 15 nodes and a total of 60 Nvidia A100 80GB GPUs.
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Figure 3: Convergence comparison (average training loss) for different graph topologies for training (a) 5, (b)
30, and (c) 100 agents.

4.1 Model Convergence

To verify the correctness of the convergence analysis, we evaluate the convergence characteristic of
the loss function for a different number of agents in Figure 3 and for different dense levels for graph
topologies (similar to previous studies (Tang et al., 2018)), where Fully Connected represents a dense
graph, and Ring and Bipartite are sparser graphs but with different connectivity protocols (as shown
in Figure 2). Among these graphs, Fully connected and Ring are r-regular, and Bipartite graph is not
r-regular. Also, these graph topologies can represent different scenarios in evaluating our method by
containing 1, 2 and V − 2 nodes in their MCDS, respectively.

Although by increasing the number of agents the convergence rate of the proposed method is hurt
similar to other DDL methods for all graph topologies, DSMA finally converges to a specific loss
value. Moreover, it can be observed that the ring topology has better convergence. This phenomenon
may arise because the MCDS consensus step in our algorithm has more connected elements for
ring topology than Bipartite and Fully Connected graphs (The number of agents in MCDS for Ring
topology is always V − 2). On the other hand, in the comparison section, we will show that more
connectivity results in more communication (Table 2).

4.2 Comparative Analysis

In this section, we compare our DSMA algorithm with other benchmark DDL methods. Some
considerations for comparison are: (i) As the best communication is reported in the LDSGD paper for
ten local SGD steps versus 20 collaborative steps, the same assumption is considered for producing
their results. (ii) The graphs in SGP optimizer are considered undirected. (iii) In the Matcha method,
the communication budget is considered as 0.5. Also, since the graph matching sets were not
implemented for large-scale networks, the results for Matcha are only shown for 5 and 10 agents.

Table 2 shows the test accuracy and agents total communication time of each method for different
graph topologies. Bold values represent the best accuracy and communication time among the
communication-efficient methods. Moreover, results for different number of agents are reported to
indicate the scalability of algorithms. The test accuracy for SwarmSGD and SGP methods drop as
the number of agents increases. This trend is also more observable through Figure 4 (a)-(c) and
(e)-(g) which plotted test accuracy results of different methods for large-scale networks (60 and 100
agents). These results are expected and discussed previously in (Assran et al., 2019; Sattler et al.,
2019). Results in Figure 4 are presented for the extremely dense graph (Fully Connected) with only
one node in MCDS as well as two sparse graphs to compare the two different cases of having a high
(V − 2 for Ring) and a low number of nodes (2 for Bipartite) in MCDS.

While, the DSMA algorithm shows an acceptable performance in terms of scalibility compared to
previous studies in different graph topologies, it significantly outperforms others in the case of a
Bipartite graph (Figure 4). This behaviour shows two significant characteristics of DSMA algorithm:
(i) the MCDS consensus step is critical in efficiently propagating information in the graph and since
the Fully Connected graph always has one node in its MCDS, this propagation of information is
indeed hurt. (ii) Apart from the case of Fully Connected graphs without any nodes in its MCDS,
if fewer nodes participate in MCDS consensus step, more redundant connections will be removed
which results in higher accuracies and lower communication rates (Table 2). This behaviour can be
clearly observed in the case of a Bipartite graph with two nodes in its MCDS. The DSMA algorithm
also converges smoother than communication-efficient methods with local updates (e.g., LDSGD).
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Figure 4: Average test accuracy for 60 agents in (a) FC, (b) Ring, and (c) Bipartite graphs, and (d) communica-
tion time per epoch for 60 agents; average test accuracy for 100 agents in (e) FC, (f) Ring, (g) Bipartite graphs,
and (h) communication time per epoch for 100 agents.

To visually illustrate communication reduction and methods scalability, Figure 4 (d) and Figure 4 (h)
shows communication time comparison for different graph topologies in large-scale networks (60,
and 100 agents). Communication time is considered as the time it takes from agents to send their
model parameters to their correspondence neighbors per epoch (averaged over 30 epochs). Primary
observation from Figure 4 (d) and Figure 4 (h) is that in the Fully Connected and Bipartite cases,
the communication time for DSMA drops dramatically compared to other methods. This happens
because fewer nodes (nodes in MCDS) need to gather model parameters from their neighbors and
then communicate with each other to achieve consensus. Additionally, as we explained, the model
performance also exceeds other methods for large-scale networks in the Bipartite case (Figure 4). In
Ring graph topology, since the number of agents in MCDS is V − 2, the reduction in communication
time is negligible. Nevertheless, for the same reason, its accuracy is very close to other methods
(e.g., DPMSGD). In general, as it is explained above, our algorithm considers the edges between the
dominated nodes and the dominating nodes as communication bridges for aggregating the model
parameters, and the edges between the dominated nodes are considered negligible. This in turn results
in a high reduction of communication overhead in Fully Connected and Bipartite cases where the
number of edges between the dominated nodes are high.

5 Conclusion

In this paper, we propose a new algorithm called Minimum Connected Dominating Set Model
Aggregation (DSMA) to reduce the communication overhead in decentralized deep learning. The
method is empirically examined over different graph topology networks (dense and sparse graphs)
on two benchmark datasets and two network architectures (three layers CNN and Resnet20). Also,
the scalability of DSMA is examined through experimental analysis. Results show that even in
large-scale networks, the communication rate reduces dramatically while preserving comparable test
accuracy. We believe DSMA can be implemented on top of other decentralized algorithms to reduce
their communication time which we consider this path as future work.
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A Appendix

A.1 Additional Results and Proofs

Following from the lemmas and theorems in the manuscript, this Appendix section focuses on proving them. We
first prove the Lemmas and then using the proved lemmas we prove two Theorems for convergence of DSMA in
convex and non-convex cases.

Lemma 1. Under Assumptions 1 - 4, the following holds true for each iteration τ ∈ N of the proposed DSMA
algorithm:

E[V (xτ+1)]− V (xτ ) ≤ −α∇V (xτ )TE[∇Fi(x
τ )] +

β̃

2
α2E[∥∇Fi(x

τ )∥2]. (16)

Proof. Based on the β-smoothness assumption (Assumption 2), the iterates generated by DSMA satisfy:

V (xτ+1)− V (xτ ) ≤ ∇V (xτ )T (xτ+1 − xτ ) +
β̃

2
∥xτ+1 − xτ∥2 (17)

Then, based on the definition of ∇Fi(x
τ ) and equation 10, and by taking expectations from the inequality, we

can obtain:

E[V (xτ+1)− V (xτ )] ≤ E[−α∇V (xτ )T∇Fi(x
τ ) +

β̃

2
α2∥∇Fi(x

τ )∥2] (18)

Due to the random sampling aspect, V (xτ ) is deterministic, V (xτ+1) is stochastic. Therefore, E[V (xτ )] =
V (xτ ) and we can complete the proof as follows:

E[V (xτ+1)]− V (xτ ) ≤ −α∇V (xτ )TE[∇Fi(x
τ )] +

β̃

2
α2E[∥∇Fi(x

τ )∥2] (19)

Lemma 2. Under Assumptions 1-5, each iteration τ ∈ N of the proposed DSMA algorithm satisfies the
following:

E[V (xτ+1)]− V (xτ ) ≤ −(c1 −
β̃

2
αδ)α∥∇V (xτ )∥2 + β̃

2
α2δ1, (20)

where the step size (α) is 0 < α ≤ c1
β̃δ

to impose sufficient condition for the rest of analysis.
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Proof. Considering Lemma 1 and the first part of Assumption 5, we have

E[V (xτ+1)]− V (xτ ) ≤ −c1α∥∇V (xτ )∥2 + β̃

2
α2E[∥∇Fi(x

τ )∥2] (21)

Then, based on the second part of assumption 5, we can obtain:

E[V (xτ+1)]− V (xτ ) ≤ −c1α∥∇V (xτ )∥2 + β̃

2
α2(δ1 + δ∥∇V (xτ )∥2) (22)

By considering Equation 14, we can complete the proof as follows:

E[V (xτ+1)]− V (xτ ) ≤ −(c1 −
β̃

2
αδ)α∥∇V (xτ )∥2 + β̃

2
α2δ1 (23)

Before proving Proposition 1, first we need to state some technical lemmas.
Lemma 3. V has a lower bound denoted by Vinf over an open set which contains the iterates {xτ} generated
by DSMA (Algorithm 1).

Lemma 3 can be concluded since fi is proper and coercive based on assumption 4.
Lemma 4. Let Assumption 1-4 holds. There exists an upper bound for the gradient expected value with a
constant 0 < U < ∞ as E[∥g(xτ )∥] ≤ U .

The proof of this lemma directly follows from the Assumption 2 and 3 (Lipschitz continuity) and U = maxiUi.
Proposition 1. Let assumptions 1-4 hold. Then the following is stated for each iteration of DSMA algorithm:

E[∥xτ
i − aτ∥] ≤ αU

1− λ2(Θ′)
∀τ ∈ N, (24)

where aτ is the average of model parameters for different agents (aτ = 1
N

∑N
i=1 x

τ
i ) and U is an upper bound

of E[∥g(xi)∥], ∀τ ∈ N as discussed in Lemma 4 and α satisfies 0 < α ≤ c1−(1−λN (Θ))δ

β̃δ
.

Proof. From the DSMA algorithm we have:

xτ+1 = Θ′xτ − αg(xτ ). (25)

We then can get the following:

xτ = −α

τ−1∑
t=0

Θ′τ−1−tg(xt). (26)

Now letting aτ = [aτ , aτ , ..., aτ ]T ∈ RN , we have:

aτ =
1

N
1N1T

Nxτ . (27)

The following derivations can be obtained:

E[∥xτ
i − aτ∥] ≤ E[∥xτ − aτ∥]

= E[∥ − α

τ−1∑
t=0

Θ′τ−1−tg(xt) + α

τ−1∑
t=0

1

N
1N1T

NΘ′τ−1−tg(xt)∥]

= E[∥ − α

τ−1∑
t=0

Θ′τ−1−tg(xt) + α

τ−1∑
t=0

1

N
1N1T

Ng(xt)∥]

= αE[∥
τ−1∑
t=0

(Θ′τ−1−t − 1

N
1N1T

N )g(xt)∥]

≤ α

τ−1∑
t=0

E[∥Θ′τ−1−t − 1

N
1N1T

N∥]× E[∥g(xt)∥]

= α

τ−1∑
t=0

λ2(Θ
′)τ−1−tE[∥g(xt)∥],

(28)
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where we used the triangle inequality, and properties of norm operation and double stochastic matrix Θ′. From
Lemma 4 E[∥g(xt)∥] ≤ U and λ2(Θ

′) < 1, thus we have:

E[∥xτ
i − aτ∥] ≤ α

τ−1∑
t=0

λ2(Θ
′)τ−1−tE[∥g(xt)∥]

≤ α

τ−1∑
t=0

λ2(Θ
′)τ−1−tU

≤ αU

1− λ2(Θ′)

(29)

which completes the proof.

Now, let us recall the main theroem of this paper for strongly convex case and prove it.

Theorem 1. (Convergence of DSMA) Under assumptions 1-5, the following inequality holds for each iterate
τ ∈ N of DSMA algorithm for the strongly convex case:

E[V (xτ )− V ∗] ≤ (1− ακ̃c1)
τ−1(V (x1)− V ∗)

+
α2β̃δ1

2

τ−1∑
l=0

(1− ακ̃c1)
l,

(30)

where V ∗ is the optimal value, and α satisfies 0 < α ≤ c1−(1−λN (Θ′))δ
β̃δ

.

Proof. Let us consider Lemma 2 and Equation 11 from the main manuscript. Then, we obtain

E[V (xτ+1)]− V (xτ ) ≤ −(c1 −
β̃

2
αδ)α∥∇V (xτ )∥2 + β̃

2
α2δ1 ≤ −1

2
αc1∥∇(xτ )∥2 + α2β̃δ1

2
(31)

Then, follows from α ≤ c1
β̃δ

(extracted from α ≤ c1−(1−λN (Θ′))δ
β̃δ

), we can obtain:

E[V (xτ+1)]− V (xτ ) ≤ −1

2
αc1∥∇(xτ )∥2 + α2β̃δ1

2
(32)

Also, based on assumption 3, we can rewrite the inequality as follows:

E[V (xτ+1)]− V (xτ ) ≤ −αc1κ̃(V (xτ )− V ∗) +
α2β̃δ1

2
(33)

After recursively taking expectation and subtracting V ∗ from both sides of the inequality, the following inequality
can obtain:

E[V (xτ+1)− V ∗] ≤ (1− ακ̃c1)E[V (xτ )− V ∗] +
α2β̃δ1

2
(34)

As 0 < ακ̃c1 ≤ κ̃c21
β̃δ

≤ κ̃c21
β̃c21

= κ̃

β̃
≤ 1, the conclusion follows by applying Equation 34 recursively through

iterations τ ∈ N.

Theorem 2: Let Assumptions 1-5 hold and the learning rate satisfies the following inequality for ∀τ ∈ N:

0 < α ≤ c1 − (1− λN (Θ′))δ

β̃δ

The DSMA iterates for non-convex case can satisfy the following inequality:

E[
m∑

τ=1

∥∇V (xτ )∥2] ≤ β̃mαδ1
c1

+
2(V (x1)− Vinf)

c1α
=

(β̃α+ 1− λN (Θ′))mδ1
c1

+
2(V (x1)− Vinf)

c1α
(35)

Proof. Let again consider Lemma 2, and take the expectation from both sides of the inequality,

E[V (xτ+1)]− E[V (xτ )] ≤ −(c1 −
β̃αδ

2
)αE[∥∇V (xτ )∥2] + β̃α2δ1

2
(36)
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Table 3: Time (ms) needed for computing Minimum Connected Dominating Set
Number of agents 5 10 30 60 100

Fully Connected 5.3 6.5 19.9 77.4 112.7

Ring 5.0 6.1 12.1 56.8 77.5

Bipartite 5.2 6.7 15.1 57.0 80.5
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Figure 5: Convergence comparison (average training loss) of ResNet20 model on CIFAR-10 dataset for different
graph topologies training with (a) 5, (b) 30, and (c) 100 agents.
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Figure 6: Convergence comparison (average training loss) of CNN model for MNIST dataset for different
graph topologies training with (a) 5, (b) 30, and (c) 100 agents.

Again since learning rate satisfies α ≤ c1
β̃δ

, we have:

E[V (xτ+1)]− E[V (xτ )] ≤ − c1α

2
E[∥∇V (xτ )∥2] + α2β̃δ1

2
(37)

Now, if we consider the summation of the above inequality for m consecutive iterations, and also based on
Lemma 3 we can obtain:

Vinf − V (x1) ≤ E[V (xτ+1)]− V (x1) ≤ − c1α

2

m∑
τ=1

E[∥∇V (xτ )∥2] + mα2β̃δ1
2

(38)

Then, by substituting β̃ = β + α−1(1− λN (Θ′)) and rearranging the inequality, we can obtain and prove the
theorem inequality.

A.2 Time for computing MCDS

In this section, we report the time to compute the MCDS for different graph topologies having various number
of agents (5, 10, 30, 60, and 100 agents) in Table 3. The values in the Table 3 are the average of three trials.

A.3 Results for ResNet20 model on CIFAR-10 dataset

To evaluate DSMA performance on a complicated model architecture, we trained ResNet20 model on CIFAR-10
dataset. Similar to the trend we had in the main manuscript to present the results, we showed the results for
model convergence, accuracy and communication time. Figure 5 shows the model convergence for different
graph topologies with 5, 30 and 100 number of agents. Our result on ResNet20 model also compared to different
communication-efficient methods in Table 4. Moreover, the scalability of our algorithm is investigated through
showing the test accuracy and communication time plots for 60 and 100 agents (Figure 7).
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Figure 7: Average test accuracy and communication time (per epoch) of different methods for ResNet20 model
on CIFAR-10 data: (a) test accuracy for 60 agents in Fully Connected graph, (b) test accuracy for 60 agents
in Ring graph, (c) test accuracy for 60 agents in Bipartite graph, (d) communication time for 60 agents, (e)
test accuracy for 100 agents in Fully Connected graph, (f) test accuracy for 100 agents in Ring graph, (g) test
accuracy for 100 agents in Bipartite graph, (h) communication time for 100 agents.

Table 4: Test accuracy and communication time for ResNet20 model training on CIFAR10.
Accuracy (%) Communication time (s)

Number of agents 5 10 30 60 100 5 10 30 60 100

DPMSGD
FC 70.4 69.4 64.0 53.8 45.3 13.4 28.5 73.8 162.3 223.9

Ring 70.9 70.2 62.6 52.5 44.5 16.8 26.4 74.6 158.5 220.3
Bipar 62.4 69.4 62.8 49.6 45.2 15.6 29.3 70.8 160.2 219.7

C
om

m
un

ic
at

io
n-

ef
fic

ie
nt

m
et

ho
ds

SGP
FC 63.3 55.8 46.7 43.6 39.7 15.2 26.2 71.8 163.4 222.1

Ring 63.1 55.7 46.7 43.6 39.9 14.7 28.8 72.6 156.8 218.6
Bipar 63.5 55.5 46.6 43.5 39.5 13.0 28.4 73.6 156.2 219.4

Matcha
FC 55.7 50.3 - - - 8.2 16.4 - - -

Ring 55.8 51.7 - - - 7.9 14.3 - - -

Bipar 51.5 50.1 - - - 7.8 14.1 - - -

LDSGD
FC 63.2 70.0 63.9 54.0 45.6 9.3 19.0 48.6 107.6 148.4

Ring 69.5 70.6 62.2 53.0 44.3 11.0 17.3 48.4 104.3 146.2

Bipar 65.7 70.0 61.1 44.3 42.9 10.6 17.2 48.1 106.4 142.3

SwarmSGD
FC 71.4 60.6 39.2 21.7 13.9 7.2 13.1 35.2 73.2 110.2

Ring 70.0 60.3 37.1 17.7 10.8 7.8 12.6 35.2 80.1 107.3
Bipar 70.2 60.2 39.9 27.0 14.9 7.7 13.1 35.2 75.2 110.4

DSMA∗
FC 66.3 65.9 58.3 50.6 44.7 3.6 3.0 2.5 2.7 2.2

Ring 66.1 68.6 62.4 53.2 44.6 8.8 22.8 66.8 154.3 215.6

Bipar 68.3 64.0 64.6 54.5 44.6 6.1 4.9 4.6 5.3 4.4

A.4 Results for the CNN model on MNIST dataset

To extend our experimental results for a different dataset, we also consider presenting the results for MNIST
dataset using the CNN model. The convergence comparison for different graph topologies is presented in
Figure 6. Different methods test accuracy and communication time comparison for different number of agents
(Table 5) and for large-scale networks (Figure 8) are also investigated.
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Figure 8: Average test accuracy and communication time (per epoch) of different methods for CNN model on
MNIST data: (a) test accuracy for 60 agents in Fully Connected graph, (b) test accuracy for 60 agents in Ring
graph, (c) test accuracy for 60 agents in Bipartite graph, (d) communication time for 60 agents, (e) test accuracy
for 100 agents in Fully Connected graph, (f) test accuracy for 100 agents in Ring graph, (g) test accuracy for 100
agents in Bipartite graph, (h) communication time for 100 agents.

Table 5: Test accuracy and communication time for CNN model training on MNIST.
Accuracy (%) Communication time (s)

Number of agents 5 10 30 60 100 5 10 30 60 100

DPMSGD
FC 98.9 98.9 98.5 97.9 97.1 2.3 4.3 12.4 21.8 33.5

Ring 98.9 98.9 98.5 97.9 97.0 2.2 4.2 11.7 21.6 32.8
Bipar 98.9 98.9 98.4 97.6 96.5 2.3 4.3 11.9 21.5 32.7

C
om

m
un

ic
at

io
n-

ef
fic

ie
nt

m
et

ho
ds

SGP
FC 98.2 97.3 94.0 90.6 85.7 2.3 4.4 12.2 21.7 33.7

Ring 98.3 97.3 94.0 90.5 85.9 2.5 4.5 12.2 21.7 32.7
Bipar 98.2 97.3 94.1 90.5 86.2 2.3 4.3 12.0 21.7 32.8

Matcha
FC 98.3 97.9 - - - 1.4 2.5 - - -

Ring 98.1 97.6 - - - 1.2 2.2 - - -

Bipar 98.1 97.8 - - - 1.1 2.1 - - -

LDSGD
FC 99.0 98.9 98.5 97.8 96.9 1.5 2.7 8.6 14.7 22.6

Ring 99.0 98.9 98.4 97.8 96.7 1.6 2.8 8.2 14.4 22.1

Bipar 99.0 98.9 98.4 97.4 96.7 1.6 2.7 8.4 14.5 22.3

SwarmSGD
FC 98.9 98.2 90.6 42.6 19.4 1.3 2.4 6.7 13.3 18.2

Ring 98.9 98.1 90.3 40.5 16.3 1.2 2.2 7.1 11.3 16.8
Bipar 98.8 98.1 90.8 45.3 20.7 1.3 2.3 6.9 13.5 16.9

DSMA∗
FC 99.0 98.9 98.4 97.5 96.8 0.5 0.4 0.4 0.4 0.3

Ring 99.0 98.9 98.5 97.8 96.9 1.5 3.6 11.3 20.9 32.1

Bipar 99.0 98.9 98.4 97.8 96.9 1.0 0.8 0.8 0.7 0.6
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