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Abstract

In blockchain systems, the design of transaction fee mechanisms is essential for
stability and satisfactory for both miners and users. A recent work has proven the
impossibility of collusion-proof mechanisms with non-zero miner revenue which is
Dominate-Strategy-Incentive-Compatible (DSIC) for users. In our work, we relax
the DSIC requirement for users to Bayesian-Nash-Incentive-Compatibility (BNIC),
and design a so-called soft second-price mechanism to ensure a form of collusion-
proofness with an asymptotic constant-factor approximation of optimal miner
revenue. Our result breaks the zero-revenue barrier while preserving reasonable
truthfulness and collusion-proof properties.

1 Introduction
Blockchains, like Bitcoin and Ethereum, are essentially distributed databases growing over time
with history data saved in “blocks” as linked lists created by miners. In each block, users leverage
blockchains to either store or verify information, such as money (cryptocurrency) transfers, texts, and
modern data such as smart contracts. This on-chain information is usually refered to as “transactions’.
Miners, in turn, try to “mine” a block by getting the access to write a block with certain efforts
(computational power in PoW or cryptocurrency deposit in PoS) and then put information into the
block.

To incentivize the miners to mine the block, they need to get paid in cryptocurrency, which consists
of a mining reward and an additional reward extract from transaction fees paid by users. Generally, a
block has limited size and takes social cost (e.g., PoW/PoS and storage space) to create, and users
can benefit from transactions being confirmed on the blockchain. Thus, it is reasonable to charge
transaction fees from confirmed transactions. To facilitate social efficiency of the system, we want to
confirm transactions of high values. Therefore, many blockchains adopt certain bidding-confirmation
transaction fee mechanism (TFM) such as auctions.

However, due to the online and anonymous properties of blockchains, transaction fee mechanism
design faces a major concern of credibility Daskalakis et al. (2020). Compared to traditional auctions,
the miner has a wider strategy space to conduct dishonest activities, including adding fake transactions,
concealing users’ bids, and colluding with users. Therefore, a desirable TFM should prevent these
dishonest activities so that it can operate correctly and efficiently.
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One advantage of blockchain is as follows. Since the blockchain is public, it is not possible for the
miner to behave in a Byzantine way via commuting different bidding vectors to different users (see
discussion from Daskalakis et al. (2020)). Besides, the paper by Daskalakis et al. (2020)) adopts
a secure commitment scheme, which uses cryptographic protocols to guarantee that a bid cannot
be modified after proposed, thus restricting the strategy space of the miner to merely adding fake
transactions and conceal transactions, ruling out strategies for the miner to collude with users and
make them change existing bids. However, the security of such cryptographic protocols is being
constantly challenged by modern cryptanalysis techniques as quantum computation Anand et al.
(2020) and subject to backdoor attacks Young and Yung (2005), rendering even currently secure
protocols in risk of possible future attacks. Since blockchain systems are designed to operate into
the future and there are heavy costs in updating their mechanisms, we are motivated to resolve the
collusion issue via economic methods by preventing them from being profitable.

Basically, a desirable TFM should satisfy truthfulness. A strong version of truthfulness of the users
can be specified as the User-Dominating-Strategy-Incentive-Compatibility (U-DSIC), which means
that any single user will not benefit from deviation from truthful bidding even if she knows all bids
of other users (as in Definition 3). In comparison, a weaker version of truthfulness of the users
is the User-Bayesian-Nash-Incentive-Compatibility (U-BNIC), which means that when each user
only knows the distribution of others’ valuations, it is a Bayesian Nash equilibrium that all users
truthfully bid their valuations (as in Definition 4). The truthfulness of the miner can be specified as the
Miner-Incentive-Compatibility (MIC), which means that the miner will not benefit from untruthful
behavior, e.g. injecting fake transactions or ignoring existing transactions. For the issue of collusion,
the paper by Chung and Shi (2021) formulates collusion-proofness as c-Side-Contract-Proof (c-SCP):
when the miner colludes with at most c users by asking them to change their bids, the coalition cannot
gain increased total payoff by deviations from truthfully bidding their valuations (as in Definition 5).

Unfortunately, the paper by Chung and Shi (2021) proved a negative result that any TFM that is
U-DSIC and 1-SCP has zero miner revenue, indicating that there does not exist a non-trivial “ideal”
TFM which can incentivize everyone to behave honestly. Thus, they relax the payoff function (as
“γ-strict utility”) to make unconfirmed over-bidder still pay a γ fraction of the worst-case cost, i.e. if a
bidder i has valuation vi and her bid bi > vi, even if the transaction is not confirmed, she gets a payoff
of −γ(bi − vi), and a fake transaction is assumed to have zero valuation. Thus, if the confirmation
probability is ai(bi,b−i) (b−i denotes bids of all other users than i) and she should pay pi(bi,b−i)
if the transaction gets confirmed, the utility she gets is:

u
(γ)
i (bi,b−i; vi) = ai(bi,b−i)(vi − pi(bi,b−i))− γ(1− ai(bi,b−i))max{bi − vi, 0}.

The above relaxed payoff function is justified by the authors of Chung and Shi (2021) by considering
the bidding process of more than one blocks in a blockchain: even if an overbidding (including
fake) transaction is not confirmed in the current block, the authors assume that the bid could still
be collected and confirmed into future blocks, and in the worst case, the over-bidder would have to
pay their full bid and get a utility of −(bi − vi). In this setting, the authors have further developed a
Burning Second Price TFM that satisfies U-DSIC, MIC and c-SCP in the notion of γ-strict utility.

Intuitively, the setting of γ-strict utility circumvents the impossibility result essentially by imposing
more penalty to deviations in a way that coarsely resemble the nature of blockchains. However, such a
relaxation might lead to further issues. For example, the choice of γ is essential in the mechanism, but
finding an accurate γ can be difficult if not impossible: the probability that a currently unconfirmed
transaction gets confirmed in future blocks is not a universal constant, as unconfirmed transactions
with higher bids are more likely to be confirmed in the future than those with lower bids. In this sense,
the authors have proposed an open question: whether there are other reasonable relaxations of the
models and incentive compatibility specifications that can also circumvent the impossibility result.

In this work, we address this open question by getting back to the one-block setting where a transaction
is only valid for the current block and expires if not confirmed immediately, a setting that is easy to
implement via time stamps. In turn, we relax the U-DSIC requirement to U-BNIC, which assumes
the users only have information of distributions of other users’ valuations instead of all their bids.
This relaxation is reasonable because in the distributed network of blockchain, it is impossible for
a user to actually know all other users’ bids, especially those who propose transactions after them
but competing the same block. On this basis, we design a TFM that satisfies U-BNIC and 1-SCP for
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bounded i.i.d. valuation distributions with a constant-factor approximation of the optimal revenue,
thus answering the open question of Chung and Shi (2021).

More specifically, we first prove an impossibility result that no deterministic U-BNIC + 1-SCP TFM
(satisfying mild conditions) can achieve positive miner reward (Theorem 2), and then modify the
second-price auction by introducing randomness in the allocation rule, develop our main mechanism
for block size 1, and estimate the optimal parameters to achieve an asymptotic constant fraction
approximation of the optimal miner revenue (as in Section 3). Finally, we extend our mechanism
to general block size k with n ≥

(
e

e−1 +Θ(1)
)
k, and prove that the asymptotic constant fraction

approximation also holds in this general case.

2 Basic Models
There are n users numbered by 1, 2, . . . , n. For user i, w.l.o.g. we assume her valuation vi is in [0, 1]
and drawn from an i.i.d. distribution Vi = V0 with pdf ρi(·) = ρ(·). By the revelation principle
Durlauf and Blume (2010), we only need to consider direct mechanisms in which users propose bids,
the miner collects the bids and the system decides which transactions to confirm and processes the
payments. Formally, we can model any Transaction Fee Mechanism as its allocation, payment and
miner revenues, i.e.
Definition 1 (Transaction Fee Mechanism). For a fixed number n of users, a Transaction Fee
Mechanism is modeled as M(a,p, r):

• The allocation rule a : [0, 1]n → [0, 1]n maps the bid vector to the allocation vector
indicating the probability each user’s transaction to be confirmed.

• The payment rule p : [0, 1]n → Rn maps the bid vector to the payment vector indicating the
payment of a user if her transaction is confirmed.

• The miner revenue rule r : [0, 1]n → R maps the bid vector to the miner’s revenue.

In execution of the mechanism, the system just needs to let all users propose their bids {bi}, draw the
confirmed transactions according to probabilities from {ai(bi,b−i)} , and then charge transaction
fees from confirmed bidders according to {pi(bi,b−i)} and give the miner revenue r(b) to the miner.

Additional definitions are deferred to Appendix B.

3 The Proposed Mechanism for Block Size 1
We first consider the case with block size k = 1, where exactly one transaction is confirmed, to give
a simple and intuitive understanding of our mechanism. In Appendix C, we further extend our setting
to general block size k for the main mechanism.

3.1 Warm Up: Soft Second-Price Mechanism

The second-price auction mechanism has been widely used in traditional auctions , in which the
highest bidder gets confirmed but pays the second highest bid. However, as we prove that any
deterministic TFM which is U-BNIC and 1-SCP satisfying mild assumptions has non-positive miner
revenue (Appendix A), we try to introduce randomness into the allocation rule.

As a basis of our main mechanism, we firstly develop a U-DSIC and 1-SCP mechanism named soft
second-price mechanism. It adopts the logit choice model as the allocation rule. After fixing the
allocation rule, the payment rule can be correspondingly fixed by the Myerson’s Lemma (Lemma 3)
Myerson (1981), and from an impossibility result (1-SCP + U-DSIC ⇒ Zero Miner Revenue) Chung
and Shi (2021) we set the miner revenue to zero. The resulting mechanism is shown as:

ai(bi,b−i) =
embi∑n
j=1 e

mbj
(1)

pi(bi,b−i) = bi −
∑n

j=1 e
mbj

membi
· ln

∑n
j=1 e

mbj

1 +
∑

j ̸=i e
mbj

(2)

r(b) = 0. (3)
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The proof that this mechanism is U-DSIC and 1-SCP is deferred in Appendix E.1. Although the soft
second-price mechanism has zero miner revenue, we can modify it in a way that preserves U-BNIC
and 1-SCP properties and yields positive expected miner revenue, as in Section 3.2.

3.2 Our Proposed Mechanism for Block Size 1

We notice that the Soft Second-Price Mechanism is U-DSIC, and thus it is U-BNIC too. Here, our
main idea is that when we perturb the payment function in such a way that the expected payment for
any user is preserved, the U-BNIC property is also preserved.

Therefore, if M = (a,p, 0) is a U-DSIC and 1-SCP mechanism, we can construct a mechanism
M̃ = (a, p̃, r̃), in which we denote p̃i(bi,b−i) = pi(bi,b−i) +

θi(bi,b−i)
ai(bi,b−i)

. Then we observe that:
(proof deferred in Appendix E.2)

Observation 1. M̃ is U-BNIC if

Eb−i∼V−i
[θi(bi,b−i)] = 0. (4)

As we have characterized a sufficient condition for U-BNIC, now we consider the condition for
1-SCP. From Lemma 4 (in Appendix) we know that for an 1-SCP mechanism (a, p̃, r̃), if we fix b−i,
the difference of ai(·,b−i)p̃i(·,b−i) and r̃i(·,b−i) is a constant. Furthermore, since a(·,b−i) is
monotonic increasing, if we want M̃ to be 1-SCP, from Lemma 4 we only need:

θi(bi,b−i)− θi(0,b−i) = r̃(bi,b−i)− r̃(0,b−i). (5)

When the distributions of all users’ valuations are i.i.d, i.e. V = V1 × V2 × · · · × Vn and ∀Vi has
identical pdf ρ : [0, 1] → [0,+∞), we denote

cρ =

∫ 1

0

ρ2(t)dt, (6)

then we can construct (θ, r̃) as following:

θi(bi,b−i) = −1

2
hb2i

( ∑
j ̸=i b

2
j

cρ(n− 1)
− 1

)
(7)

r̃(b) =
1

2
h

(
n∑

i=1

b2i −
∑

1≤i<j≤n b
2
i b

2
j

cρ(n− 1)

)
(8)

The corresponding mechanism M̃ = (a, p̃, r̃) can be represented as:

ai(bi,b−i) =
embi∑n
j=1 e

mbj

p̃i(bi,b−i) = bi −
∑n

j=1 e
mbj

membi

(
ln

∑n
j=1 e

mbj

1 +
∑

j ̸=i e
mbj

+
1

2
hmb2i

( ∑
j ̸=i b

2
j

cρ(n− 1)
− 1

))

r̃(b) =
1

2
h

(
n∑

i=1

b2i −
∑

1≤i<j≤n b
2
i b

2
j

cρ(n− 1)

)

and it is U-BNIC and 1-SCP for h ∈ [0,+∞). We can compute that

Eb∼V [r(b)] =
1

4
hncρ > 0. (9)
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However, we have to be careful to the value of h. Intuitively, the value of h describes the extent
of perturbation from the original U-DSIC mechanism, and when the perturbation is too large, the
individual rationality (pi(bi,b−i) ≤ bi) and budget feasibility properties may not hold. For best miner
revenue, we want to make h as large as possible while keeping the mechanism feasible. Fortunately,
for fixed cρ, we have an estimation of optimally feasible h that enables constant approximation ratio
of the optimal revenue while preserving IR and BF constraints, as (proof deferred to Appendix E.3):
Theorem 1. For n ≥ 1 and M = (a,p, 0) given by (1-3), let m = 1, we have h∗ = h∗(n, cρ) > 0

such that ∀h ∈ [0, h∗], the corresponding mechanism M̃ = (a, p̃, r̃) is UIR and BF, and for
n → +∞,

h∗(n, cρ) = Ω(cρ/n). (10)
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