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Abstract

Recent developments in machine learning have shown that successful models do
not rely only on huge amounts of data but the right kind of data. We show in this
paper how this data-centric approach can be facilitated in a decentralised manner
to enable efficient data collection for algorithms. Face detectors are a class of
models that suffer heavily from bias issues as they have to work on a large variety
of different data.
We also propose a face detection and anonymization approach using a hybrid Multi-
Task Cascaded CNN with FaceNet Embeddings to benchmark multiple datasets to
describe and evaluate the bias in the models towards different ethnicities, gender
and age groups along with ways to enrich fairness in a decentralized system of data
labelling, correction and verification by users to create a robust pipeline for model
retraining.

1 Introduction

The amount of data available and used for training public datasets is vast, yet there is an inherent bias
in these datasets towards certain ethnicity groups like caucasian faces as compared to other ethnicities
such as Asian, African, Indian, etc. There is definitely a need to mitigate the bias and emphasize
on the improvement of fairness in face detection algorithms. This will improve the efficiency and
accuracy of Face Verification (FV), recognition, anonymization and other use-cases of face detection.

With the advent of publicly available images on social media and the internet, there is a need to
enforce personal privacy of people by performing face anonymization on these images. In this work,
we propose a ML pipeline to detect faces using a robust multi-task cascaded CNN architecture along
with other pre-trained models such as VGGFace2 [3] and FaceNet [15] to anonymize the detected
faces and blur them using a Gaussian function. We also benchmark the performance of certain
custom and pre-trained models on various open-sourced datasets such as MIAP [16], FairFace [9],
and RFW [21] (Racial Faces in Wild) to understand the bias of models trained on these datasets.
Along with face anonymization, we also determine the age and gender demographics of the detected
faces to find any bias present in open-source models. We also evaluate the performance of these
open-source models before and after training it on a diverse and fairness-induced dataset by proposing
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a decentralized system of data evaluation and verification by users of the model output generated
(faces detected in the input), see section 3.3.

Lastly, we also discuss ways to de-bias the data during pre-processing and post-processing and how
to reduce the false positives using clustering and statistical analysis of the generated output. We
propose a decentralized platform for data collection and annotation of data with user incentives for
detecting any machine-undetected faces in images as part of an initiative to increase model fairness
and reduce ethnicity, age, and gender bias.

2 Related Work

The current systems in computer vision have higher yield and astonishing results in several areas, but
there are several societal issues related to demographics, ethnicity, gender, age, etc. that have been
discussed more recently due to their usage in face recognition, object detection and other applications
[18] [19] [8]. Most image recognition algorithms have high disparity in performance on images
across the world as discussed in [5] [17] [22] due to the bias in the dataset used for training and also
the differences in pipeline used. This bias is generally due to dataset disparity since most of the
open-source datasets created and benchmarked are localized to only a few locations restricting the
diversity in data quality. Secondly, the other set of related papers talk about harmful and mislabelled
data associations which can often lead to a lot of wrongful associations across gender and ethnicity
groups in general as discussed by Crawford et al. [4]. Some of the other indicators which causes
disparity in performance of a face detection algorithm towards certain groups of people is due to bias
in learned representations or embeddings of users of underrepresented groups and other demographic
traits. Raji et al. [14] talks about reduction of errors in evaluating the commercial face detectors
by changing the evaluation metrics used. Ensuring privacy as part of face recognition campaign
is an equally important problem, and limited research has been done on the task of extracting and
remove private and sensitive information from public dataset and image databases. There has been a
few previous work done in literature [2] [12] [7] that blur the background or use gaussian/pixelation
functions to blur faces in an image.

To improve the robustness and add fairness to the datasets and models used in the above problem
approach, we propose a decentralized tool for collecting, annotating and verifying the face detections
made by face recognition algorithms across different parts of the world to ensure the data samples
collected are rich in diversity, help identify the bias in current commercial and open-source models,
generate edge-cases and training samples that could be used to retrain these detectors to improve the
coverage of data distribution learnt by our models.

3 Methodology

We aim to build a robust face anonymization pipeline along with functionalities to determine the
characteristics of the detected faces as shown in Fig 1 on a decentralized platform for verification and
annotation. We also try to estimate the bias towards certain ethnicities and characteristic features
in some of the popular pre-trained model architectures such as MTCNN (Multitask Cascade CNN)
[23], FaceNet [15] and RetinaNet [10] against the open-source datasets used for understanding and
evaluating bias in the face detectors.

3.1 Datasets

In order to understand the bias of ethnicity, age, and gender, it is important to evaluate the performance
of classification of different ethnicities as a binary task of faces detected and undetected to understand
if there is a bias towards some ethnicity classes having stronger attribute indicators as compared to the
rest. The following datasets are a good benchmark to determine the bias since each of these datasets
have been labelled and open-sourced keeping the diversity and inclusion of most ethnicities in mind.

MIAP Dataset: The MIAP (More Inclusive Annotations for People) Dataset [16] is a subset of Open
Images Dataset with new set of annotations for all people found in these images enabling fairness in
face detection algorithms. The Dataset contains new annotations for 100,000 Images (Training set
of 70k and Valid/ Test set of 30k images). Annotations of the dataset includes 454k bounding boxes
along with Age and Gender group representations.
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Figure 1: End to End Architecture of Face Anonymization and attribute extraction

FairFace Dataset: FairFace[9] a facial image database contains nearly 100k images which is also
created to reduce the bias during training by having equal representation of classes from YFCC-
100M Flickr dataset [20]. The dataset consists of 7 classes namely, White, Latino, Indian, East
Asian, Southeast Asian, Black and Middle Eastern. Models trained on FairFace have reported higher
performance metrics[9] as compared to other general datasets, and hence, we have included this
dataset as well as part of our study.

Racial Faces in the Wild (RFW): The RFW [21] Database primarily consists of four test subsets in
terms of ethnicity backgrounds, namely Indian, Asian, African and Caucasian. Each subset consists
of images for face verification, which is around 10k images of 3k individuals.

3.2 Architecture

The end-to-end pipeline uses multiple models to detect faces from the input images. MTCNN [23]
and VGGFace [3] are used for generating bounding boxes of the detected faces, post which, we
enhance the output bounding boxes and extract the face image to generate a gaussian blurred image
as part of our goal to anonymize the faces. These architectures have been employed and are chosen as
standard models for face attribute extraction algorithms. The non-anonymized copy of the detected
images are used as input to the FaceNet [15] model for generating the face embedding vectors.

The MTCNN architecture proposed by Zhang et al. [23] mainly consists of three different stages
and each stage consists of a Neural Network, namely, the Proposal Network, Refine Network and the
Output network. The first stage uses a shallow CNN architecture to generate candidates proposal
windows, which the Refine network enhances with a deeper CNN. The output network refines the
result of previous layers and generates the face landmark positions. Since the architecture uses
different face landmark locations to estimate a face, we use it as part of our experiment to evaluate
face recognition datasets for estimating inherent bias.

FaceNet is another model proposed by Schroff et al. [15] outputting a 128-dimension vector, also
known as a face embedding which is optimized to differentiate between similar and dissimilar faces
using euclidean metrics. The architecture uses a triplet-based loss function, which uses positive and
negative samples to estimate the distance between each other respectively as part of the loss function.
For each face detected in the inferred image, an embedding is calculated. We use FaceNet embeddings
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to cluster similar faces using DBSCAN [6] on faces extracted from the MTCNN model. DBSCAN
generally uses two parameters, namely, the minimum distance between two instances for them to
be grouped together, and second, the number of points to form a cluster. So, if distance between
two faces is high, they tend to form different clusters. PCA [11], a very popular dimensionality
reduction technique is used to reduce the 128-dimensional vector to 2-dimensional vector to visualize
the cluster faces as part of estimating bias in the algorithms.

Generally the undetected faces and misclassified faces in the dataset for different pre-trained and
popular model architectures form outliers or belong to wrong clusters which are easy to identify.
We then employ clustering metrics to estimate the embedding based partitioning of clusters, such
as: Mean Silhouette Coefficient which measures similarity and dissimilarity between elements of a
certain cluster, and, Davies-Bouldin index [13].

3.3 Decentralized Data Collection Platform

We propose a decentralized data platform for crowdsourcing images and image datasets. The purpose
of the tool is to run inference on images that users upload and perform face anonymization using our
algorithm. This creates two opportunities for incentivizing users to use our tool:

(1) Users can now annotate images on the interface directly in case of any undetected faces (False
negatives) and wrong detections (False positives) and post successful verification by verifiers, will
be incentivized in form of bounties and revenue shares, (2) Users can upload, annotate, and verify
annotations of images while still keeping the ownership of their data - they give a license to the
platform to use it and in return get a share in the revenue their contributions create, i.e, any form of
revenue generated using models built using the dataset will ensure that users receive a royalty for
contributing to the dataset. Also, the missed edge-cases (face detections and false positives) across
various images will be collected in the system and will be used for retraining the face detectors in a
periodic manner to improve the performance of the model and enrich fairness and reduce the inherent
bias in the data and trained model.

Distributing ownership of the dataset across creators, annotators and verifiers will democratize the
system of ownership without only one central party controlling it and the revenue/value generated by
the built algorithms and datasets can flow back to the community directly. The trained model and
inference algorithm will be published on decentralised algorithm marketplaces so it will be possible
to run inference in decentralised compute environments to make downloading and copying the model
impossible. For end-to-end workflow, refer appendix 3.

4 Results

As seen in Table 1, we present a few statistical metrics to determine the fairness for different ethnicities
in the RFW dataset using MTCNN [23] model and FaceNet embeddings. It is not directly evident
from the results of one group getting better results consistently, but a clear pattern in the bias towards
certain ethnicities became evident on deeper study. The prediction accuracy for Asian (A) and Black
(B) groups were lower compared to Indian (I) and White (W). But, this is not enough to indicate the
bias as there isn’t a significant difference between different groups. However, Positive Predictive
Value (PPV) and False Postive Rate (FPR) indicate higher confidence in White faces than other
groups with a significantly lower False Positive Rate, and this pattern is also seen in PPV, as for white
faces, the value is as high as 0.98 and compared to Asian group which is only around 0.78 indicating
a higher precision rates in detecting white faces compared to other groups.

Table 1: Statistical metrics for RFW Dataset using pre-trained MTCNN + FaceNet embeddings

Metrics (M) Asian(A) Indian(I) Black(B) White(W)
Prediction Accuracy 0.91 0.95 0.92 0.97
False Positive Rate 0.07 0.04 0.08 0.005
False Negative rate 0.05 0.08 0.04 0.14

Positive Predictive Value 0.78 0.93 0.82 0.98
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We also tried to quantify the similarity between users in a given cluster extracted and processed by
FaceNet embeddings followed by dimensional reduction techniques for both MIAP and RFW datasets
in Table 2. As we can see, the trend in mean silhouette score (MSC) is such that attribute with higher
number of distinct clusters has a higher score, indicating higher similarity between elements to their
own cluster. Clearly for MIAP [16], as we can see when we calculate the metrics for combined
clusters of race and gender, the MSC score is higher than when calculated individually, indicating
that the gender clusters in any race are closer and correlated than between two ethnicities (racial
groups). The Davies-Bouldin index also shows a very similar pattern for the MIAP dataset indicating
that clusters are best seperated when combined than when clustered individually in the order: both
clustered together, racial groups clustered together and finally clustered based on gender.

Table 2: Clustering metrics for RFW and MIAP Dataset using MTCNN + FaceNet embeddings

Metrics RFW-Race MIAP-Race MIAP-Gender MIAP-Both

MSC 0.12 0.16 0.09 0.19
DBI 4.21 3.89 6.47 3.64

These results clearly state the need for a trained model that is unbiased towards all ethnicities and
gender groups. To enrich fairness in training, the MTCNN + FaceNet model was retrained on a
FairFace [9], a balanced dataset with equal distribution of all ethnicities and gender groups with
adjusted labels of Race similar to RFW and MIAP Datasets. The increase in prediction accuracy of
classes ranged between 1% to 5.5%, and PPV showed an increase of upto 19% after retraining. This
shows there was a clear improvement in performance of the model as shown in Table 3 indicating that,
an unbiased dataset used for training along with a few data augmentation techniques can improve the
model performance such that, the results are not biased towards any single gender or racial group.

Table 3: Statistical metrics for RFW Dataset using FairFace trained MTCNN + FaceNet embeddings

Metrics (M’) Asian(A) Indian(I) Black(B) White(W)
Prediction Accuracy 0.96 0.95 0.97 0.98
False Positive Rate 0.01 0.01 0.008 0.005
False Negative rate 0.05 0.03 0.04 0.04

Positive Predictive Value 0.93 0.92 0.94 0.98

Hence, as proposed in Section 3.3, a Data Portal will be used for curation and publishing of various
datasets with the support of annotators and verifiers. The incentive of ownership in dataset usage and
also for labelling incorrectly detected faces and missed face detections on the tool also helps increase
the engagement of users on the portal to challenge the model and receive bounty in return. This will
help us to periodically retrain the face anonymization models on various edge-cases and improve
fairness in these models in a decentralized manner.

5 Conclusion
In conclusion, we believe that measuring fairness in face anonymization algorithms is necessary to
deploy technology that is unbiased and more inclusive to all the different ethnicities, gender and
age groups. We proposed a decentralized tool to improve the quality of training datasets used in
modelling face recognition algorithms by shifting focus onto identifying and quantifying "bias" in the
core algorithm towards different groups and de-biasing it. The debiasing steps included both, creating
a diverse dataset with better representation of most demographics and retraining all the layers of the
core algorithm to allow the same model to be fine-tuned (Dense layers only) periodically based on
the missed detections identified by the annotators and verifiers in the tool. The bias measurement
framework was outlied in this paper.

As part of our analysis, we figured that most face detection algorithms are predominantly biased
towards white faces across both MIAP and RFW datasets irrespective of the gender groups. Since, the
clustered embeddings of FaceNet model showed that clustering metrics were much higher when male
and female faces were clustered together across all ethnicities than when clustered seperately. This
indicates a need for diversity in the dataset across all ethnicities; it is more likely to be fairer when
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the dataset creation happens in a more decentralised manner and users across the world contribute
in adding images, identifying missed detections of a certain demographic group or in validating the
corrected output from a fellow user.

In future work, we will focus on answering the questions raised during the above discussion in terms
of breaking down the clusters in more detail to help us interpret correlation between the data points
which led the model to cluster certain points closer to each other. We also plan to make the Data
Portal public with access to all users to ensure that the users will be able to upload their own data
into the pipeline and also get incentivized based on the usage of their data from any algorithm that
is built on top of their data. We also plan to improve the anonymization algorithm using a GAN
based approach to ensure the data distribution of the anonymized face does not change completely.
In addition, we also plan to integrate Spotify’s Annoy [1] for indexing similar faces across the Data
Portal to find similar images of users uploaded for denoising the uploaded data for duplicates.

6 Appendix

6.1 Clustering similar faces using FaceNet Embeddings

The visual representation of the RFW (Racial Faces in Wild) dataset faces clustered using dimension-
ality reduction technique: t-SNE in 2-dim space followed by DBSCAN algorithm (Converted from
128-dim vector generated by FaceNet representations or face embeddings). As seen visually, similar

Figure 2: Face Embeddings visualized using t-SNE and DBSCAN

demographic groups are clustered closer to each other in the 2-D space. On using different clusters
sizes, the density of clusters changed accordingly. The number of clusters that gave the optimal
clustering metrics was chosen for benchmarking the dataset’s clustering metrics.

6.2 Data Portal pipeline
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Figure 3: Proposed end-to-end working of the decentralized data portal
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