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Abstract

As a distributed learning, Federated Learning (FL) faces two challenges: the un-1

balanced distribution of training data among participants, and the model attack2

by Byzantine nodes. In this paper, we consider the long-tailed distribution with3

the presence of Byzantine nodes in the FL scenario. A novel two-layer aggrega-4

tion method is proposed for the rejection of malicious models and the advisable5

selection of valuable models containing tail class data information. We introduce6

the concept of think tank to leverage the wisdom of all participants. Preliminary7

experiments validate that the think tank can make effective model selections for8

global aggregation.9

1 Introduction10

Increasing attention has been focused on Federated Learning (FL) with the advancement of machine11

learning and the trend of decentralized training data. By cooperatively training models among multiple12

parties, FL has made great strides in privacy issues and data legislation. FL allows participants to13

share model parameters rather than raw data and update the global model by aggregating local models14

from the participants. However, the distributed training model of FL leads to the issues of security15

and heterogeneity data distribution among different parties. Existing global aggregation algorithms in16

FL, which are based on the global average calculation, are vulnerable to attacks, e.g., FedAvg [1].17

The attackers can compromise the accuracy and convergence of the global model by submitting18

malicious parameters or performing data poisoning attacks.19

Existing FL aggregation algorithms, e.g., Krum [2], median [3], and trimmed mean [3], achieve20

Byzantine Fault Tolerance (BFT) for security by selectively dropping discrepant models trained with21

distinctive datasets. The existing global aggregation algorithms in FL overlook the low-frequency22

and small-size data, which might be of considerable value. In the real-world scenario, e.g., Internet23

of vehicles (IoV) and Internet of Medical Things (IoMT), the obtained data could follow a long-tail24

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.



distribution with low frequencies and small size because of the imbalanced distribution among FL25

parties and overall data classes.26

A few researchers have focused on the scarce but valuable data resources in imbalanced training data27

in FL recently. In [4], it is first demonstrated that globally imbalanced training data in FL leads to a28

decrease in model accuracy To address the problem of declining accuracy, Astraea is developed to29

rebalance the training process with mediators. However, in Astraea, mediators require FL participants30

to share information about the distribution of their local data, which may introduce new privacy31

concerns. The work in [5], on the other hand, determines whether there is a data imbalance issue32

in FL by a monitor without directly sharing local data distribution information. In each round of33

FL, the monitor infers the impact of each class on the global model and introduces a new loss34

function, Ratio Loss, to address the problem of the local imbalance and global imbalance. The35

BalanceFL framework [6] divides the data imbalance problem into local and global components. It36

uses knowledge inheritance for missing classes (global issue) and balanced sampling for inter-class37

balancing (local problem), which outperforms the state-of-the-art FL approaches. The existing38

methods focus on the impact of the imbalanced long tail problem on FL accuracy and do not take39

into account the security issue with the attacks of Byzantine nodes.40

In this paper, we propose a novel two-layer aggregation method to fully use the long-tail data41

with Byzantine nodes. We define a new role in the traditional FL process, i.e., the think tank, to42

discriminate the shared local models for global model optimization. The think tank votes on shared43

models based on their local test results to help the aggregator effectively select models worthy44

for global aggregation and discard malicious or worthless ones. In the proposed framework, the45

aggregation process of FL is divided into two layers, i.e., the filter layer and the vote layer. In the46

filter layer, FL aggregators preliminary filter the models by calculating their distances from others. In47

the vote layer, the think tank votes on the models dropped by the former and decides whether they48

should be selected for aggregation to reduce the information loss of the tail classes.49

The think tank, which is composed of all participants, is designed to avoid the problem that models50

containing information on tail class data are misclassified as anomalies by the existing BFT algorithm51

like multi-Krum [2]. Compared with other selective aggregation algorithms that compute only52

on aggregators, the introduction of think tanks can make global decisions smarter and shows the53

advantages of group cooperation. Each participant can be more deeply involved in the FL process by54

acting as both the provider of the local model and the voters in the think tank.55

The main contribution of this paper is that the proposed two-layer aggregation method suppresses56

malicious updates in FL while preserving models trained from rare samples with an imbalanced57

long-tail distribution. To the best of our knowledge, this paper is the first to consider a combined58

scenario of imbalanced data processing and Byzantine attack in FL. We propose the concept of think59

tank in FL process to separate the task of judging values of shared local models from aggregators,60

avoiding the limitations of a single criterion through two-layer validation.61

The experimental results show that the proposed two-layer aggregation method improves the accuracy62

by 9% over the traditional multi-Krum algorithm when a small amount of unique data exists in a few63

random nodes in FL. The proposed method also shows the ability to resist Byzantine node attacks.64

2 Proposed Method65

The proposed two-layer aggregation method leverages the information of the tail classes data to66

improve model generalizability while being resilient to attacks, where the training data is long-tail67

distributed and Byzantine nodes may exist. The two layers of the proposed method are the filter layer68

and vote layer, respectively. The filter layer filters the underrepresented models based on distance69

calculation, while the vote layer decides whether the dropped model is beneficial to the global model70

based on test performance. By using the two-stage determination mechanism, the legal models71

which contain useful knowledge are selected for global aggregation, while the malicious versions are72

discarded.73

The structure of the proposed method is shown in Fig. 1, including local learning, filter layer, vote74

layer, and global aggregation. The filter layer and the vote layer are the core of the proposed method75

to select all valuable models for aggregation while discarding malicious ones. Such double standard76

detection method improves the efficiency of the proposed structure in terms of both information77
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Figure 1: The structure of the proposed method. There are four parts, i.e., local learning, filter layer,
vote layer, and global aggregation. FL participants share the locally trained model and participate in
the voting layer as the think tank, while the aggregator completes the computation of the filtering
layer and the final aggregation.

exploitation and attack defense. By using the think tank voting process, the wisdom of all participants78

is utilized for local models’ value evaluation.79

Assuming that there are one aggregator and N participants, denoted as P1, · · · , PN , with local dataset80

Di (i ∈ {1, · · · , N}), the input of the proposed method in the epoch r is a local model Mr
i shared by81

a participant to the aggregator, and the output is an updated global model Mr
G. The two-level process82

of the proposed aggregation method is described as follows.83

Filter Layer. The aggregator calculates the score sri of Mr
i as given by84

sri =

K∑
k=1

∥Mr
i −Mr

k∥2, i ∈ {1, · · · , N}, (1)

where Mr
k refers to the K closest models to Mr

i , and the notation ∥ · ∥2 indicates the measure85

of Euclidean distance between models. Constant K (K ≤ N ) can be adjusted according to the86

requirements. If model Mr
i is the top m models with the smallest scores, it is selected and we set87

Iri = 1. Otherwise, we set Iri = 0. According to (2a), the global benchmark model Mr
G0

is calculated.88

For all unselected Mr
j , i.e., Irj = 0, Mr

j is added to the baseline model Mr
G0

for the corresponding89

hypothetical global model Mr
Gj

, given by (2b), for further evaluation and vote in the next layer.90


Mr

G0
=

1

m

∑
i

Mr
i , where Iri = 1; (2a)

Mr
Gj

=
m×Mr

G0
+Mr

j

m+ 1
, where Irj = 0. (2b)

Vote Layer. In the voting layer, the think tank consisting of all participants plays a key role in further91

evaluating the models filtered in the first layer. Each think tanker receives a series of global model92

candidates and tests the received models on its local test set. Think tankers vote on the models not93

selected in the previous layer based on the test results. If Mr
Gj

outperforms Mr
G0

on Pi’s local test94

set, Pi votes that the model should be added to the global model.95

The vote layer evaluates the models based on the accuracy of the test results, which is related to the96

selection of the test set. The test data sets owned by the think tankers can be either assigned from a97

full test set or randomly sampled from their own local data sets.98

The aggregator follows the majority opinion to update the selected results Iri of the shared local model99

Mr
i from each participant Pi based on the votes of the think tanks. The final global aggregation result100

is obtained as given by101
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Mr
G =

∑N
i=1 M

r
i × Iri∑N

i=1 I
r
i

. (3)

Implementation process is detailed in Algorithm 1.102

Algorithm 1 The Proposed Two-layer Aggregation Algorithm.
Input:
1: Global Epoch r, Local Training Model Mr

i from Participant Pi (i = 1, · · · , N ) with Training
Dataset Di and Test Dataset DTesti

Output:
2: Global model Mr

G.

▷ [Filter Layer]
3: scoreri =

∑
∥Mr

i −Mr
k∥2 (Mr

k refers to the K closest models to Mr
i )

4: if scoreri ∈ [ The m smallest scores] then
5: Iri = 1
6: else
7: Iri = 0
8: end if
9: Mr

G0
=

∑N
i=1 Mr

i ×Ir
i

m
10: if Irj = 0 then

11: Mr
Gj

=
m×Mr

G0
+Mr

j

m+1

12: end if

▷ [Vote Layer]
13: Pi tests Mr

G0
and Mr

Gj
(for all j that satisfies Irj = 0) on DTesti for accuracy accri,0 and accri,j

14: if accri,j ≥ accri,0 then
15: tri,j = 1
16: else
17: tri,j = 0
18: end if
19: if

∑N
i=1 t

r
i,j ≥ N

2 and Irj = 0 then
20: Irj = 1
21: end if

▷ [Global Aggregation]
22: Mr

G =
∑N

i=1 Mr
i ×Ir

i∑N
i=1 Ir

i

return Mr
G

3 Experiment Plan and Progress103

3.1 Experiment Plan104

The overall experiments include two parts: the classification accuracy under the different data settings105

and the different number of Byzantine nodes.106

First, the experiments for different data settings can be further divided into data set selection, training107

data distribution, and test dataset settings. The datasets will use artificially imbalanced MNIST108

datasets and ImageNet-LT [7]. By artificially controlling the ratio of each class in the MNIST dataset,109

we will draw a clear picture of the performance of the provided method under different training data110

distribution parameters, such as the ratio of the number of target classes to other classes and the111

frequency of the target classes appearing among participants. With ImageNet-LT, which simulates112

the actual long-tail data in nature, we want to show the value of the proposed method in practical113

applications.114
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As the test sets used by the think tank also have a significant impact on the aggregation results, a115

series of experiments are also needed to show the effects of the different test sets on the proposed116

method, for example, test sets of the think tank contain full class data or only have imbalanced test117

data consistent with the training data.118

As for the research of Byzantine nodes, complete and systematic experiments will be conducted119

to compare and demonstrate the resilience of the proposed method under different Byzantine node120

settings. The method that can provide a larger number of Byzantine fault-tolerant nodes is considered121

to be superior. We start our experiments with a small number of Byzantine nodes.122

3.2 Current Progress123

From the present experimental results, the proposed method is able to learn rare training sample124

knowledge effectively and free from attacks. We simulate the situation of the tail class on MNIST by125

deliberately setting the training data of class 0 to exist only on 10% participants and to have only 10%126

the amount of data of the other classes. The test set used by each think tanker is randomly sampled127

from a complete test set with a balanced distribution of classes, as the test criteria require equally128

good generalization to a small and less frequent class. In addition, we set up a Byzantine node with129

10% class 0 data but maliciously reverses its label to the wrong one to confuse the aggregator.130

We compare the proposed method with FedAvg [1] and multi-Krum [2] algorithms. Fig. 2 and Fig. 3131

show the accuracy of the three methods on the complete test set and on a separate test set consisting132

of a particular class, class 0, respectively.133

Figure 2: Test accuracy on the full test set. Only
one participant in ten has a small amount of
class 0 data (10% of the other classes).

Figure 3: Test accuracy on the class 0 test set.
Only one participant in ten has a small amount
of class 0 data (10% of the other classes).

We see that both FedAvg and multi-Krum algorithms fail to learn recognition on class 0 data with134

similar classification accuracy, because the FedAvg algorithm is affected by the malicious model135

and the multi-Krum algorithm directly discards the model containing class 0 data as well as the136

malicious one. The proposed model performs better than its counterparts in the same scenario that it137

can effectively learn the knowledge of class 0 data with limited information. The proposed model138

improves the accuracy of the model on the overall test set from 87.29% for multi-Krum and 87.44%139

for FedAvg to 95.51%, an improvement of 9.42% and 9.23%, respectively. The accuracy on the class140

0 data is enhanced from up to 81.6% by the proposed method. Furthermore, after a short period141

(about 20 epochs), the proposed method can accurately reject malicious models during aggregation to142

protect the models from attacks.143

4 Discussion and Future Work144

In this paper, we present a two-layer aggregation method as a safe solution to the long-tail data145

issue in FL with Byzantine nodes, which can identify malicious attacks and learn useful knowledge146

from the small amount and low-frequency tail class training data. The think tank made up of FL147

participants is designed to help aggregators more effectively and accurately measure the value of148

shared local models.149
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For the maximum fault-tolerant node number of the proposed method, we will use mathematical150

methods for theoretical derivation. A more complete and rigorous proof of the BFT property of151

the proposed method will be given in conjunction with the corresponding experimental results.152

In addition, considering the computational and communication costs, we will perform accurate153

calculations by mathematical methods and demonstrate them by experiments.154
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